3.997 \(\int \frac {x}{\sqrt {2+2 a-2 (1+a)+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=31 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{\sqrt {c}} \]

[Out]

arctanh(x^2*c^(1/2)/(c*x^4+b*x^2)^(1/2))/c^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {3, 2013, 620, 206} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{\sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[2 + 2*a - 2*(1 + a) + b*x^2 + c*x^4],x]

[Out]

ArcTanh[(Sqrt[c]*x^2)/Sqrt[b*x^2 + c*x^4]]/Sqrt[c]

Rule 3

Int[(u_.)*((a_) + (c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(b*x^n + c*x^(2*n))^p, x] /;
FreeQ[{a, b, c, n, p}, x] && EqQ[j, 2*n] && EqQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 2013

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[(a*x^Simplify[j/n]
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j
/n]] && EqQ[Simplify[m - n + 1], 0]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {2+2 a-2 (1+a)+b x^2+c x^4}} \, dx &=\int \frac {x}{\sqrt {b x^2+c x^4}} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {b x+c x^2}} \, dx,x,x^2\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x^2}{\sqrt {b x^2+c x^4}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{\sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 52, normalized size = 1.68 \[ \frac {x \sqrt {b+c x^2} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b+c x^2}}\right )}{\sqrt {c} \sqrt {x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[2 + 2*a - 2*(1 + a) + b*x^2 + c*x^4],x]

[Out]

(x*Sqrt[b + c*x^2]*ArcTanh[(Sqrt[c]*x)/Sqrt[b + c*x^2]])/(Sqrt[c]*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

fricas [A]  time = 0.78, size = 74, normalized size = 2.39 \[ \left [\frac {\log \left (-2 \, c x^{2} - b - 2 \, \sqrt {c x^{4} + b x^{2}} \sqrt {c}\right )}{2 \, \sqrt {c}}, -\frac {\sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2}} \sqrt {-c}}{c x^{2} + b}\right )}{c}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-2*c*x^2 - b - 2*sqrt(c*x^4 + b*x^2)*sqrt(c))/sqrt(c), -sqrt(-c)*arctan(sqrt(c*x^4 + b*x^2)*sqrt(-c)/
(c*x^2 + b))/c]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 39, normalized size = 1.26 \[ -\frac {\log \left ({\left | -2 \, {\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2}}\right )} \sqrt {c} - b \right |}\right )}{2 \, \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*log(abs(-2*(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2))*sqrt(c) - b))/sqrt(c)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 44, normalized size = 1.42 \[ \frac {\sqrt {c \,x^{2}+b}\, x \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+b}\right )}{\sqrt {c \,x^{4}+b \,x^{2}}\, \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c*x^4+b*x^2)^(1/2),x)

[Out]

1/(c*x^4+b*x^2)^(1/2)*x*(c*x^2+b)^(1/2)*ln(c^(1/2)*x+(c*x^2+b)^(1/2))/c^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.06, size = 32, normalized size = 1.03 \[ \frac {\log \left (2 \, c x^{2} + b + 2 \, \sqrt {c x^{4} + b x^{2}} \sqrt {c}\right )}{2 \, \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

1/2*log(2*c*x^2 + b + 2*sqrt(c*x^4 + b*x^2)*sqrt(c))/sqrt(c)

________________________________________________________________________________________

mupad [B]  time = 4.56, size = 33, normalized size = 1.06 \[ \frac {\ln \left (\frac {c\,x^2+\frac {b}{2}}{\sqrt {c}}+\sqrt {c\,x^4+b\,x^2}\right )}{2\,\sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^2 + c*x^4)^(1/2),x)

[Out]

log((b/2 + c*x^2)/c^(1/2) + (b*x^2 + c*x^4)^(1/2))/(2*c^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x}{\sqrt {x^{2} \left (b + c x^{2}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral(x/sqrt(x**2*(b + c*x**2)), x)

________________________________________________________________________________________